quick & dirty bash script to collect ASA CPU consumption at different values of ICMP TYPE and CODE

Mathematica code to input the script-data and plot the results:

```
data = Import["c:\\blacknurse.out", "Table"];
ListDensityPlot[data,
PlotLabel ->
  "CPU consumption on a 5540 ASA during Black Nurse (delay between ICMP's = 200µs)",
Mesh → All, InterpolationOrder → 0, PlotRange → {{-.5, 15.5}, {-.5, 15.5}},
ColorFunction → ColorData["Rainbow"], FrameLabel → {"TYPE", "CODE"},
FrameTicks → {{Range[0, 15], None}, {Range[0, 15], None}},
Epilog → {White, Table[Text[data[[i*16+j+1]][[3]], {i, j}], {i, 0, 15}, {j, 0, 15}]}]
```

CPU consumption on a 5540 ASA during Black Nurse (delay between ICMP's = $200 \mu s$)

15	- 24	18	16		51	52	15	18	24	18	17	59	59	18	16	18
14	- 24	17	18	59	59		18	18	21	16	17	59		18	17	15
13	- 20	18	17				17	18	24	17	16			18	18	18
12	- 24	16	18				18	16	24	18	17			17	18	18
11	- 24	18	18	51	59		17	18	24	18	17	59	53	18	18	17
10	- 24	17	18		51		18	18	24	18	18			15	18	18
9	- 24	17	18	60		52	15	17	23	16	18			17	15	15
8 10	- 24	18	16			58	18	18	23	17	16			17	18	18
CODE 7	- 20	14	17				17	18	24	18	18		60	17	18	18
6	- 24	18	18	53			18	18	23	18	18			18	17	18
5	- 25	18	18		50	59	18	16	24	18	18	51	53	17	17	18
4	- 24	18	18		59	51	15	18	23	18	17	59	59	18	17	16
3	- 24	18	16			59	18	18	22	16	16			17	18	17
2	- 24	14	18				18	18	24	18	18			17	18	18
1	- 24	17	18	59		59	18	18	23	18	17	59		17	17	18
0	- 33	18	18	59	51	59	18	18	16	18	17	61	53	16	17	18
	0	1	2	3	4	5	6	7 TY	8 PE	9	10	11	12	13	14	15